Optimizing Landmark-Based Routing and Preprocessing

Alexandros Efentakis
Research Center “Athena”
Artemidos 6, Marousi 15125, Greece
efentakis@imis.athena-innovation.gr

ABSTRACT

Many acceleration techniques exist for the single-pair shortest path
problem on road networks. Most of them have been significantly
improved over the years to achieve faster preprocessing times and
superior performance. In this spirit, our current work significantly
improves the classic ALT (A* + Landmarks + Triangle equality)
algorithm. By carefully optimizing both preprocessing and query
phases, we managed to effectively minimize preprocessing time to
a few seconds, making the ALT algorithm also suitable for dynamic
scenarios, i.e., road networks with changing edge weights due to
traffic updates. We also accelerated the query phase for both unidi-
rectional and bidirectional versions of the ALT algorithm, provid-
ing fast enough query times (including full-path unpacking) suit-
able for real-time services and continental road networks.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph algorithms; H.2.8 [Database Ap-
plications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
Shortest-path computation, ALT algorithm, Road Networks

1. INTRODUCTION

Over the years there has been a great deal of research in finding
point-to-point shortest paths in road networks. Although the classic
Dijkstra algorithm [13] solves the single pair shortest path (SPSP)
problem of finding an exact shortest path of length d(s, r) between a
given source s and target ¢ in a graph G = (V, E, [), it still requires a
few seconds in continental-sized road networks. Faster alternative
algorithms use a two-stage approach: preprocessing requires a few

*On leave from Research Center “Athena”, Greece.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

IWCTS ’13, November 05-08 2013, Orlando, FL, USA

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2527-1/13/11 $15.00
http://dx.doi.org/10.1145/2533828.2533838.

Dieter Pfoser
Department of Geography and

Geolnformation Science
George Mason University

4400 University Drive, MS 6C3 Fairfax
VA 22030-4444
dpfoser@gmu.edu

minutes (or hours) and produces a (linear) amount of additional
data that is used to accelerate shortest path queries.

Existing methods for solving the SPSP problem in road net-
works may be classified to three major categories (see [9] for an
overview). Hierarchical Approaches such as Transit Node Routing
(TNR) [4], Contraction Hierarchies (CH) [17] or Hub-based Label-
ing algorithm (HL) [1] exploit the inherent hierarchical structure of
the given road network and build a search Graph which includes
shortcuts, i.e., additional edges connecting important nodes (those
participating in many SP queries). In contrast, goal direction tech-
niques such as ALT [18] and Arc-flags [24, 26] direct the search
towards the target by preferring edges that shorten the distance to
the goal node and ignoring edges that cannot possibly belong to the
shortest path based on their preprocessed data. A third category
is based on graph separators such as HiTi [22] and Customizable
Route Planning (CRP) [8]. During preprocessing, one computes a
multilevel partition of the graph to create a series of interconnected
overlay graphs. A query starts at the lowest (local) level and moves
to higher (global) levels as it progresses.

Many of those acceleration techniques have been significantly
improved over the years. State-of-the-art methods such as TNR
and HL originally required extensive preprocessing time of more
than a few hours. Later works [2], [3] improved those preprocess-
ing times to just a few minutes. Unfortunately those preprocess-
ing times are still not fast enough for real-time mapping services,
where edge weights change frequently due to traffic updates (typ-
ically every 15 - 30 minutes). Additionally, since they are based
on Contraction Hierarchies (CH), whenever edge weights change
new shortcuts must be added and others must be removed from
the search graph, altering the search graph’s entire structure, mak-
ing path unpacking harder and slower to implement. Additionally,
CH is very sensitive to the metric used, making the preprocess-
ing significantly slower for a) travel distances b) turn restrictions
[8]. That is why mapping services such as Bing Maps, prefer to
use CRP which might be orders of magnitude slower than HL or
TNR, but has faster preprocessing times (few secs) and uses al-
ways the same shortcuts regardless of the metric used ([11], [8]).
To sum up, the above mentioned methods, although provided supe-
rior shortest-path computation speeds are not suited for a dynamic
navigation scenario in which the edge weights of the road network
graph change based on actual traffic conditions.

This work aims at significantly improving the performance of
the ALT (A* + Landmarks + Triangle equality) algorithm [18] and
making it suitable for a dynamic navigation scenario. We focus
our attention on the ALT algorithm, since it has none of the afore-
mentioned disadvantages of hierarchical methods, i.e., (i) it is very
robust with respect to the metric used [18] (ii) it requires no path

unpacking (producing the actual road network path of the short-
est route) (iii) its storage requirements and auxiliary data structure
size depend solely on the number of landmarks (and not on the uti-
lized metric) and most importantly (iv) the typical landmarks-based
preprocessing may also be used for estimating the graph distance
between any two vertices. For that reason, it has been used in other
contexts outside road networks (such as social networks) in cases
when the actual distance between two nodes can be sufficiently re-
placed by the close estimation provided by the typical landmarks
preprocessing ([27],[32]).

Our specific contributions are to improve (i) ALT’s preprocess-
ing time and (ii) its shortest-path query phase performance. By
proposing a novel, simple, yet efficient landmark selection strat-
egy and exploiting several optimization strategies, we managed to
lower the preprocessing time from several minutes [10] to a few
seconds. Moreover, we also improved ALT’s query phase and
tripled unidirectional ALT performance while also improving bidi-
rectional performance by 44%. Although we did not alter the actual
algorithm (including memory requirements and time complexity)
our efforts significantly broadened ALT’s entire scope, since: a) its
preprocessing is now fast enough for supporting dynamic road net-
works with frequent traffic updates b) ALT algorithm is now fast
enough to support real time SP queries for global scale mapping
services. The efficiency and performance of our approach is al-
ready demonstrated in the live system [14] of the SimpleFleet [31]
project that uses live-traffic information updated every 5 minutes.

In addition, we also filled a gap in ALT’s bibliography, since to
the best of our knowledge there was no previous work examining
its performance for varying number of landmarks and the travel
distances metric. By documenting those experiments we get an ad-
ditional insight of the performance characteristics of the algorithm.

The outline of this work is as follows. Section 2 describes previ-
ous work in relation to the ALT algorithm. Section 3 describes our
scientific contribution beyond the current state-of-the-art in terms
of ALT’s preprocessing and performance. Experiments establish-
ing the superiority of our approach are provided in in Section 4.
Finally, Section 5 gives conclusions and directions for future work.

2. RELATED WORK

In the discussion on related work that follows, we are dealing
with directed weighted graphs G(V, E,), where V is a finite set of
vertices, £ C VxV are the edges of the graph and [is a positive
weight function E — R*. Typically, weight / represents the travel
time required to traverse the edge. In other cases, / may refer to the
length of the edge in meters (for travel distances metric). The re-
verse graph G = (V, E) is the graph obtained from G by substituting
each edge (u,v) € E by (v, u).

2.1 The ALT algorithm

The concept of landmarks within the context of the single-pair
shortest-path problem was officially introduced in [18]. In this
work, a small set of vertices called landmarks is chosen and for
each vertex, the authors precompute distances to and from every
landmark. Given a set S C V of landmarks and distances d(L;, v),
d(v, L;) for all nodes v € V and landmarks L; € S, the following
triangle inequalities hold: d(u,v) +d(v, L;) > d(u, L;) and d(L;, u) +
d(u,v) > d(L;,v). Therefore, the function 7y = max;,max{d(u, L;)—
d(v,L;),d(L;,v) — d(L;,u)}, where 0 < i < |S|— 1, provides a lower
bound for the graph distance d(u, v).

ALT is a bidirectional variant of the classic A* algorithm [20]
using the aforementioned lower bounds. Since the combination
of A" and bidirectional search is not trivial, correctness can only
be guaranteed if 7, (the heuristic function for the forward search)

and 7, (the heuristic function for the backward search) are consis-
tent. This means 77(u,v) in G must be equal to 7,.(v, u) in the re-
verse graph. ALT typically uses the average potential function [21]
defined as p,(v) = (my(v) — m(v))/2 for the forward and p,(v) =
(7 (v) = s (v))/2 = —ps(v) for the backward search.

The original implementation of ALT uses for each SP computa-
tion, only a subset of & active landmarks, which are those that pro-
vide the best lower bounds on the s — ¢ distance. Later works [19]
update the set of active landmarks dynamically during the query
phase. The computation starts using the initially best landmarks
and as the algorithm progresses additional landmarks (which may
provide better lower bounds) are brought into the active set. After
every active landmark update, the potential functions change and
therefore the priority queues must also be updated. Additionally
the algorithm can no longer terminate as soon as the two oppo-
site searches meet. Instead the ALT algorithm may safely termi-
nate only when the sum of minimum keys in the forward and the
backward queue exceeds p+ p((s), where u represents the tentative
shortest path length.

Preprocessing. The preprocessing stage for ALT is divided in
two phases, the landmarks selection process and the computation
of distances of all other graph vertices from and to the landmarks.
As far as the landmark selection process is concerned, many alter-
native strategies have been suggested in [18] and [19]. As Delling
et al. suggest in [10], “no technique picks landmarks that univer-
sally yield the smallest search space for random queries” (although
some methods, such as the Avoid and maxCover [19] typically per-
form better).

In the next section we are going to describe the various opti-
mizations and changes we did for the acceleration of both the pre-
processing and query phases of the ALT algorithm.

3. SUPERCHARGING ALT

In this section we are going to describe in detail the various opti-
mizations and techniques we used during the preprocessing and SP
query phases of the ALT algorithm, in order to dramatically reduce
preprocessing time and achieve superior performance, compared to
previous approaches.

3.1 Preprocessing

As noted earlier, the preprocessing stage for the ALT algorithm
is divided in two phases, the landmarks selection process and the
computation of distances of all other graph vertices from and to
the landmarks. Most of the preprocessing time is dominated by
the landmark selection process, which usually is done by sophisti-
cated algorithms such as Avoid and MaxCover [18]. Unfortunately
for continental road network graphs and |S| > 16, the MaxCover
heuristic is not longer applicable due to its high memory require-
ments [10]. Therefore it is obvious we need a simpler and faster
landmark selection strategy that will also provide similar perfor-
mance.

3.1.1 Landmark Selection

We propose a novel and extremely simple strategy for selecting
landmarks. We partition the graph (using a partitioning tool) into
cells and from each cell we select the four corner-most vertices
(top, bottom, left, right according to their coordinates) as land-
marks. So, if we are going to use 32 landmarks we partition the
graph into 8 cells and get the 4 corner-most vertices per cell. If
for example, the top node coincides with the leftmost node for a
particular cell, we take the second best in one of those directions.
Our new landmark selection strategy will be denoted hereafter as
the partition - corners method.

On a side note, the partitioning of the graph should not consid-
ered part of the actual preprocessing, since it is metric independent
and happens only once even for dynamic scenarios (as previous
works such as CRP suggest [8]). After partitioning the graph and
efficiently storing the cell of each node, the selection of landmarks
actually takes less than 1-2 sec, since it only requires a linear sweep
in the vertex information vector of size |V|.

At first glance, our partition - corners selection strategy seems
naive but it has many important advantages: 1) It is extremely fast
ii) It ensures that landmarks are uniformly distributed within the
graph iii) The acquired landmarks may accelerate even local SP
queries (between nodes belonging to the same cell). Still, since
there is no quality guarantee for the selected landmarks, during the
SP query phase we do not use the Active landmarks optimization
(see Section 2.1) used in earlier works. This way, all available land-
marks participate in every SP query, which compensates for their
supposed “lower” quality (see 3.2 for details).

In terms of partitioning tools, we used the state-of-the-art parti-
tioning tool Buffoon / KaFFPa [30], which was kindly provided to
us by its authors. Buffoon / KaFFPa creates far better quality parti-
tions (fewer border nodes) than its predecessor METIS [23] which
was used many times before, in the context of SP computation ([15]
and [16]). Still, the actual quality of the partitioning plays very little
role in our landmark selection process, since we are not interested
in minimizing the number of border nodes. Therefore our approach
will work with any partitioning tool.

3.1.2 Landmark Distances Calculation

During the second phase of the ALT algorithm preprocessing,
we need to calculate distances of all graph vertices to and from
the landmarks. Keep in mind that is very important to accelerate
this particular preprocessing phase, since in order to adapt ALT
to a dynamic scenario (where edge weights change frequently due
to traffic updates), this second phase has to run at every batched
traffic update. On the contrary, the landmark selection phase has
to run only once even for dynamic graphs, since all previous ap-
proaches [10] assume using static landmarks, i.e., they do not repo-
sition landmarks if the graph weights are altered.

In order to calculate distances of all graph vertices to and from
the landmarks, we need to run two Dijktra algorithms from each
landmark, one that runs in the forward graph and one that runs in
the reverse graph, for a total of 2|S| Dijkstra searches. Since each
Dijkstra search is independent from the others, this process may
be easily parallelized. Still, this is not good enough if we want to
provide preprocessing times of less than a minute. We also need
to accelerate each of those individual Dijkstra searches. For that
purpose, we applied the following four optimizations:

Dijkstra Heaps. A Dijkstra implementation with a heap struc-
ture that only supports Insert and Delete-Min operations (with-
out a Decrease-Key operation), hereafter referred to as Dijkstra
- NoDec), performs more heap operations and is theoretically in-
ferior to the asymptotic running time of Dijkstra implementations
with decrease-key (denoted as Dijkstra - Dec). However, previous
works have shown that such streamlined heaps are likely to be more
efficient. In fact [6] has shown all Dijkstra - NoDec implementa-
tions when run for various graphs (including road networks) are
at least 1.4 times faster than their Dijkstra-Dec counterparts. This
improved performance was also evident in our experiments.

Priority Queue Optimization. Instead of using binary heaps for
our priority queue implementation, we used the aligned 4-ary heap
which is a highly-optimized heap for cache memory implemented
by Sanders [28]. This array-based heap aligns its data to cache
blocks, which in turn reduces the number of cache-misses when

accessing any data item. The Sanders implementation we used sup-
ports Insert and Delete-Min operations in O(log4N) time and block
transfers each. We were able to use such an implementation, only
after we employed the previous Dijkstra - NoDec optimization.

Although buckets-based priority queues are shown to perform
even better for the Dijkstra algorithm [6],[7], since we are going to
run many Dijkstra searches in parallel, we did not want to use such
memory intensive data structures whose efficiency and size needed
depends on the smallest and largest edge weight of the graph. Our
experiments have shown that indeed our aligned 4-ary heap Dijk-
stra - NoDec implementation is very fast and memory efficient at
the same time and scales pretty well for multicore processors.

Node Reordering. Delling et al. report [7] that Dijkstra’s per-
formance improves significantly, if we reorder the vertices so that
neighboring vertices have similar IDs, in order to reduce the num-
ber of cache misses during computation. Based on [29], they also
show that a simple depth first search layout, i.e., reordering the
vertices according to a simple depth first search (DFS) improves
Dijkstra’s speed by 2.8 times. Following those observations, we
initially reordered vertices ID according to a DFS layout and then
we reordered vertices again, using the partition obtained during the
landmark selection process, so that nodes within the same cell are
assigned consecutive nodelDs, as suggested by [16].

Keep in mind that the finalized nodes ordering (DFS layout +
partition) not only lowers preprocessing times but it additionally
accelerates the SP query phase of the ALT algorithm, as evidenced
by our experiments (see Sec. 4).

Graph Data Management. Typically when we want to run bidi-
rectional SP queries on a graph, we use a compact modified adja-
cency array [25] representation of both forward and reverse graphs,
which stores two additional bits per edge in order to separate in-
coming from outgoing edges per vertex. Although storing the for-
ward and reverse graphs together as a single adjacency array rep-
resentation is very memory efficient, our experiments have shown
that storing forward and reverse graphs separately is significantly
faster during preprocessing. Consequently, since forward and re-
verse graphs are stored separately, during preprocessing we first
run all the Dijkstra algorithms from each landmark in the forward
graph and once we are done we run the same Dijkstra searches in
the reverse graph. That way the parallel threads only operate on
one of the two adjacency arrays graph structures, which makes the
entire process significantly faster.

Storing the two graphs separately, also accelerates the SP query
phase of the ALT algorithm, especially for the unidirectional ALT
which runs only in the forward graph. Although storing separately
the forward and reverse graphs requires almost double the main
memory, the corresponding graph data structure will always be
much smaller than the main memory required for storing the land-
marks distances. Therefore, it has no impact on the scalability of
the ALT algorithm for larger networks.

Conclusively, our experiments (see Sec. 4) showed that by using
those four optimizations described earlier, for 32 landmarks and the
benchmark continental road network of Western Europe, even our
sequential calculation of vertex distances from and to landmarks
is 3 times faster than previously best published landmarks paper
[10] in terms of preprocessing. If we parallelize the process, it
takes merely 30sec. on a commodity workstation, which makes
landmarks competitive in terms of preprocessing with the fastest (in
terms of preprocessing) CRP acceleration technique. As a result,
the ALT algorithm may now be used in dynamic road networks
with frequent traffic updates as well.

3.2 Shortest-Path Querying

All of the previous preprocessing optimizations (namely: Avoid-
ing decrease-key operations, the aligned 4-ary heap, nodes reorder-
ing and storing forward and reverse graphs separately) have also a
positive impact on the SP query phase of the ALT algorithm. Still
we can do even better. So, we applied 3 additional optimizations to
the SP query phase of the ALT algorithm:

Active Landmarks Purging. Previous landmark approaches
[19] used the active landmarks optimization (see Sec. 2.1), i.e.,
they use a subset of the available landmarks during the query phase,
which is updated dynamically during the search. This optimization
has the disadvantage of requiring to dynamically update the priority
queues during the search and that the ALT algorithm cannot termi-
nate as soon as the two opposing searches meet. We dropped this
optimization entirely and during the search we get lower bounds
based on all available landmarks. This lowers the number of set-
tled nodes (especially for the unidirectional version of ALT), with-
out imposing an unbearable burden on the computation cost, since
typical workstations nowadays are more powerful than those of pre-
vious years ago.

Keep in mind that by using all available landmarks we more than
compensate for their supposed “lower” quality, due to our simple
partition - corners strategy (see Sec. 3.1.1). Still, since we use
all available landmarks for calculating lower bounds, we need to
significantly accelerate the process, which can be done with our
next two optimizations:

Landmark Distance Records. Similar to [10], we store land-
marks distances in a 32-bit vector of size 2-|S|-|V|. Distance of node
with nodelID i € [0,|V| — 1] from landmark number j € [0, |S]| — 1]
is stored at position 2 - |S| - i + 2 - j and the distance of node i to
the landmark j is stored in the next position (2 - [S|-i+ 2 j+ 1).
But what we do entirely differently, is that we store landmarks dis-
tances from landmarks to nodes negated (as negatives), because this
is how they are going to be used during estimation of lower bounds
(for the forward search).

In the case of a bidirectional search, at its beginning we cache
the opposite of landmark distances of start and goal node in two
separate vectors of size 2|S| (denoted hereafter as the opposite-
StartNodeVector and oppositeGoalNodeVector). As aresult, at each
node expansion 1y = max(nodeVector+oppositeGoalNodeVector)
and 1, = —min(nodeVector +oppositeS tartNodeVector). By stor-
ing the opposite of landmarks distances from landmarks in the afore-
mentioned 32-bit vector, we avoid unnecessary additive inversions
during the calculation of lower bounds, which makes calculation
faster and prepares the ground for our next optimization:

SSE Instructions Current x86-CPUs have special 128-bit SSE
registers that hold four 32-bit integers and allow basic operations,
such as addition, minimum and maximum to be executed in paral-
lel. By using these 128-bit registers we can significantly acceler-
ate the computation of the lower bounds 7y = max(nodeVector +
oppositeGoalNodeVector) and n, = —min(nodeVector +
oppositeS tartNodeVector) computation. This optimization alone
gives a solid 10-20% improvement.

Although [7] has used SSE instructions for accelerating SP com-
putation from multiple sources, to the best of our knowledge we are
the first that utilize this optimization within a single source SP com-
putation. Moreover, latest Intel Haswell processors already possess
256-bit registers (512-bits registers are in the works) and as a result,
this optimization will be even more efficient in the near future.

By all those optimizations, with bidirectional ALT we can achieve
SP query times with 48 landmarks, better than those previously re-
ported for 64 landmarks. Moreover, we managed to triple unidire-
ctional ALT performance, as will be shown in the next section.

4. EXPERIMENTS

The experimentation that follows, assesses the performance of
our optimizations for the preprocessing and query phases of unidi-
rectional and bidirectional versions of the ALT algorithm for vary-
ing number of landmarks.

Experiments were performed on a workstation with a four-core
Intel Core i7 processor clocked at 3.4GHz and 32Gb of main mem-
ory, running Ubuntu 12.10 64bit. Our code was written in C++
and was compiled with GCC 4.7 and using optimization level 3.
We used OpenMP for parallelization. Although the preprocessing
stage used all 4 cores (with hyperthreading), SP queries used only
one core for accurate benchmarking. We used the strongly con-
nected component of the European road network with 18 million
nodes and 42 million arcs made available by PTV AG for the 9th
DIMACS Implementation Challenge [12]. Both nodelDs and edge
weights are 32-bit integers. We experimented with both travel times
and travel distances.

4.1 Travel times

We compare our approach with the previously best (in terms of
efficiency and performance) published ALT paper [10]. During
their experiments, they used a slower workstation than ours (dual
AMD Opteron 252 at 2.6 GHz with 16 Gb of RAM). Their code-
base was also in C++ and was compiled with GCC 4.1, using opti-
mization level 3. In contrast to our approach, no parallelization was
used for preprocessing. Their experiments were based on the same
benchmark European road network. The results (as well as ours)
are based on 10,000 random s-t queries. For an accurate compari-
son we present their originally recorded times and the same times
divided by a of factor of 1.31 (difference between our processors’
clock speeds). Their experiments were done for 8, 16, 32, 64 land-
marks. We experimented with 8-64 landmarks at steps of 8.

Results are presented in Table 1. In the PREPOCESSING sec-
tion of the table, the column “time” refers to total preprocessing
time (landmark selection + calculating landmark distances) and the
column “dist” refers to the time required only for calculating land-
mark distances. For [10], the numbers in parentheses represent the
simulated times, which are the quotients of the original times di-
vided by 1.31.

Results for preprocessing clearly show the inferior performance
of previous methods. We use a simpler landmark selection strategy
that requires merely 1-2s instead of previous time-consuming and
complicated strategies. In addition, our approach is superior even
for the preprocessing time required for updating the landmarks dis-
tances. Even if we divide the simulated times of [10] by 5.6 (the
typical parallel speedup encountered on our 4-core processor with
hyperthreading), our approach is still consistently 3 times faster. It
is therefore obvious that our various optimizations for preprocess-
ing have really paid off and as a result, the improved preprocessing
time always remains consistently below 1min.

In terms of unidirectional queries, we see that unidirectional ALT
is now 3 times faster but also settles fewer nodes. This fact is
a clear indication that the active landmarks optimization does not
work for unidirectional queries and as a result, dropping it was the
right choice. By using all the available landmarks, we can easily
achieve query times of less than 72ms and the unidirectional ALT
scales better when we increase the number of landmarks.

In the case of bidirectional queries, for |S| < 16, the lower qual-
ity of our selected landmarks comes into play and our method set-
tles more nodes and is slightly slower than [10]. On the contrary,
for |S| > 24, results are entirely different. Our method, due to its
aggressive optimizations, is consistently faster by 4-5ms from the
simulated query times of [10], which constitutes an average im-

Table 1: Performance of ALT for varying number of landmarks, in comparison to [10] (travel times)

PREPROCESSING QUERY UNIDIR. QUERY BIDIR

[10] OURS [10] OURS [10] OURS [10] OURS [10] OURS [10] OURS

time time dist dist # settled # settled time time # settled | # settled time time
ALGO (s) (s) (s) (s) nodes nodes (ms) (ms) nodes nodes (ms) (ms)
ALT-8 | 1566(1205) 8 168(128) 7 1,019.843 | 1,140,887 | 391.6(301) | 175.3 163,776 | 465,503 | 127.8(98.3) | 115.7
ALT-16 | 5112(3932) 16 330(254) 15 815,639 804,663 327,6(252) | 124.0 74,669 248,247 53.6(41.2) 60.9
ALT-24 23 22 677,446 110.2 134,315 35.3
ALT-32 | 1626(1251) 31 666(512) 30 683,566 506,805 301.4(232) 85.9 40,945 74,423 29.4(22.4) 17.5
ALT-40 38 37 449,259 81.0 53,410 15.2
ALT-48 46 45 430,389 78.4 48,499 124
ALT-56 55 53 400,483 71.7 38,140 10.8
ALT-64 | 4092(3148) 60 1326(1020) 58 604,698 385,322 288.5(221) 70.6 25,324 36,607 19.4(14.8) 10.3

provement of 22-44%. By using 48 landmarks, we get even more
improved query times than those previously achieved with 64 land-
marks (simulated times). For |S| > 48 we are able to achieve query
times < 12ms, which means that bidirectional ALT is now capa-
ble of handling real-time SP queries, since contrary to hierarchical
methods, it does not require extra time for returning full paths (path
unpacking).

4.2 Travel distances

We also repeated the same experiments, using travel distances
for the same road network. This effort was necessary in order
to cover a significant gap in the ALT’s large bibliography, since
(to the best of our knowledge) there is not some previous work
demonstrating the performance of ALT algorithm for travel dis-
tances, |S| > 16 and varying number of landmarks. As a result,
in Table 2 we simply present our results. We use the exact same
landmarks as before.

Table 2: Performance of ALT for varying number of landmarks

and travel distances metric

PREPROCESS. | QUERY UNIDIR. QUERY BIDIR

time dist # settled time # settled time
ALGO (s) (s) nodes (ms) nodes (ms)
ALT-8 6 5 1,176,419 170.8 | 1,165,631 | 228.1
ALT-16 14 13 682,947 101.1 604,168 127.7
ALT-24 20 19 511,786 91.3 317,227 88.7
ALT-32 26 25 348,060 59.7 160,836 45.1
ALT-40 33 32 319,109 53.0 142,400 39.1
ALT-48 38 37 294,548 48.7 123,952 32.8
ALT-56 44 43 278,579 44.8 112,515 30.0
ALT-64 51 48 264,516 44.5 101,957 29.1

Results for travel distances are exactly what we expected. Pre-
processing is 15-22% faster, since the individual Dijkstra searches
typically perform better for travel distances. After a node is en-
countered for the first time, it is less frequent for further expan-
sions to improve its cost. That is after all one of the advantages of
the ALT algorithm in comparison to hierarchical methods, i.e., its
preprocessing is faster for travel distances, whereas methods such
as CH require 7 times more preprocessing time for the same metric
[8] when compared to the travel times metric.

We also see that unidirectional ALT is now almost competitive
with bidirectional ALT, both in SP query times and number of set-
tled nodes. This was something to be expected, since previous
works [18] has recorded the quite similar efficiency of both meth-
ods when travel distances were used. The interesting fact though is,
that unidirectional ALT is now faster for travel distances than travel
times similarly to plain Dijkstra. To the best of our knowledge, we
are the first to pinpoint this very interesting fact.

Moreover, since ALT is more robust with respect to different
metrics [5], switching to travel distances only makes bidirectional
ALT 2-3 times slower. In the same scenario, hierarchical methods
become at least one order of magnitude slower. Because of its ro-
bustness, the ALT algorithm has been successfully used for other
kinds of graphs, such as social networks ([27],[32]), where most
hierarchical, road network oriented methods would fail.

5. CONCLUSION AND FUTURE WORK

In this work we have significantly improved the classic ALT
algorithm, both in terms of preprocessing time and shortest-path
query performance. Our improvements were considerable in that
we lowered preprocessing times to < 1min (a total of 40-52 times
improvement) in comparison to previous published works. We also
tripled unidirectional ALT SP query performance and improved
bidirectional ALT performance up to 44%. Our efforts signifi-
cantly altered the ALT’s scope since (i) its preprocessing is now
fast enough for supporting dynamic road networks with frequent
traffic updates and (ii) the ALT algorithm may now support real
time SP queries for global scale mapping services.

As shown by previous works, for real-world services we do not
always use the fastest algorithm but the most practical one. The
ALT algorithm already has several excellent qualities. Robustness
to the metric used, the ability to return full paths, robustness to the
graph density and stable auxiliary data memory size for all met-
rics. Through our efforts, the ALT algorithm has now, and what
was missing, practical preprocessing times and fast enough per-
formance for real-world mapping services. The efficiency and per-
formance of our approach is already demonstrated in a live system
[14] addressing fleet management needs. Given this effort, the ALT
algorithm is now ready for practical use.

We can give the following directions for future work. Now that
ALT has been significantly improved, it would be easy to combine
it with other fast preprocessing methods for road networks, like
CRP, to further boost SP query performance, without a significant
increase in preprocessing times. Moreover, since ALT has been
used in other contexts outside road networks, it would be interest-
ing to show how our method performs for other kind of graphs as
well. But most of all, we hope to encourage more researchers to
add the ALT algorithm to their practical applications.

Acknowledgments

The research leading to these results has received funding from the
European Union Seventh Framework Programme “SimpleFleet”
(http://www.simplefleet.eu, grant agreement No. FP7-ICT-
2011-SME-DCL-296423).

6.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.
A hub-based labeling algorithm for shortest paths in road
networks. In Proceedings of the 10th international
conference on Experimental algorithms, SEA’11, pages
230-241, Berlin, Heidelberg, 2011. Springer-Verlag.

I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.
Hierarchical hub labelings for shortest paths. In Proceedings
of the 20th Annual European conference on Algorithms,
ESA’12, pages 24-35, 2012.

J. Arz, D. Luxen, and P. Sanders. Transit node routing
reconsidered. In V. Bonifaci, C. Demetrescu, and

A. Marchetti-Spaccamela, editors, Experimental Algorithms,
volume 7933 of Lecture Notes in Computer Science, pages
55-66. Springer Berlin Heidelberg, 2013.

H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast Routing
in Road Networks with Transit Nodes. Science,
316(5824):566, Apr. 2007.

R. Bauer, D. Delling, P. Sanders, D. Schieferdecker,

D. Schultes, and D. Wagner. Combining hierarchical and
goal-directed speed-up techniques for dijkstra’s algorithm. J.
Exp. Algorithmics, 15:2.3:2.1-2.3:2.31, March 2010.

M. Chen, R. A. Chowdhury, V. Ramachandran, D. L. Roche,
and L. Tong. Priority queues and dijkstra$ algorithm, 2007.
D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F.
Werneck. Phast: Hardware-accelerated shortest path trees. In
Proceedings of the 2011 IEEE International Parallel &
Distributed Processing Symposium, IPDPS *11, pages
921-931, Washington, DC, USA, 2011.

D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck.
Customizable route planning. In Proceedings of the 10th
international conference on Experimental algorithms,
SEA’11, pages 376-387, Berlin, Heidelberg, 2011.
Springer-Verlag.

D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering route planning algorithms. In ALGORITHMICS
OF LARGE AND COMPLEX NETWORKS. LECTURE
NOTES IN COMPUTER SCIENCE. Springer, 2009.

D. Delling and D. Wagner. Landmark-based routing in
dynamic graphs. In Proceedings of the 6th international
conference on Experimental algorithms, WEA’07, pages
52-65, Berlin, Heidelberg, 2007. Springer-Verlag.

D. Delling and R. Werneck. Faster customization of road
networks. In V. Bonifaci, C. Demetrescu, and

A. Marchetti-Spaccamela, editors, Experimental Algorithms,
volume 7933 of Lecture Notes in Computer Science, pages
30—42. Springer Berlin Heidelberg, 2013.

C. Demetrescu, A. V. Goldberg, and D. Johnson. The
shortest path problem. Ninth DIMACS implementation
challenge, Piscataway, NJ, USA, November 13—14, 2006.
Proceedings. DIMACS Book 74. AMS , 2009.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269-271, 1959.

A. Efentakis, S. Brakasoulas, N. Grivas, G. Lamprianidis,
K. Patroumpas, and D. Pfoser. Towards a Flexible and
Scalable Fleet Management Service. In Proceedings of the
6th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, 2013. To appear.

A. Efentakis, D. Pfoser, and A. Voisard. Efficient data
management in support of shortest-path computation. In
Proceedings of the 4th ACM SIGSPATIAL International
Workshop on Computational Transportation Science, CTS

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

’11, pages 28-33, New York, NY, USA, 2011. ACM.

A. Efentakis, D. Theodorakis, and D. Pfoser. Crowdsourcing
computing resources for shortest-path computation. In
Proceedings of the 20th International Conference on
Advances in Geographic Information Systems, SIGSPATIAL
’12, pages 434-437, New York, NY, USA, 2012. ACM.

R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies: faster and simpler hierarchical
routing in road networks. In Proceedings of the 7th
international conference on Experimental algorithms,
WEA’08, pages 319-333, Berlin, Heidelberg, 2008.
Springer-Verlag.

A. V. Goldberg and C. Harrelson. Computing the shortest
path: A* search meets graph theory. In /16th ACM-SIAM
Symposium on Discrete Algorithms, pages 156-165, 2004.
A. V. Goldberg and R. F. F. Werneck. Computing
point-to-point shortest paths from external memory. In
Algorithm Engineering and Experimentation, 2005.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics,
4:100-107, 1968.

T. Ikeda, M. Y. Hsu, H. Imai, S. Nishimura, H. S. Moura,

T. Hashimoto, K. Tenmoku, and K. Mitoh. A fast algorithm
for finding better routes by ai search techniques. 1994.

S. Jung and S. Pramanik. An efficient path computation
model for hierarchically structured topographical road maps.
IEEE Transactions on Knowledge and Data Engineering,
14:1029-1046, 2002.

G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Sci.
Comput., 20:359-392, 1998.

E. Kohler, R. H. Mohring, and H. Schilling. Fast
point-to-point shortest path computations with arc-flags. In
IN: 9TH DIMACS IMPLEMENTATION CHALLENGE,
2006.

K. Mehlhorn and P. Sanders. Algorithms and Data
Structures: The Basic Toolbox. Springer, Berlin, 2008.

R. H. Mohring, H. Schilling, B. Schiitz, D. Wagner, and

T. Willhalm. Partitioning graphs to speedup dijkstra’s
algorithm. J. Exp. Algorithmics, 11, February 2007.

M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast
shortest path distance estimation in large networks. In
Proceedings of the 18th ACM conference on Information and
knowledge management, CIKM °09, pages 867-876, New
York, NY, USA, 2009. ACM.

P. Sanders. Fast priority queues for cached memory. ACM
Journal of Experimental Algorithmics, 5:312-327, 1999.

P. Sanders, D. Schultes, and C. Vetter. Mobile route
planning. In Proceedings of the 16th annual European
symposium on Algorithms, ESA °08, pages 732-743, Berlin,
Heidelberg, 2008. Springer-Verlag.

P. Sanders and C. Schulz. Distributed Evolutionary Graph
Partitioning. In Proceedings of the 12th Workshop on
Algorithm Engineering and Experimentation (ALENEX’12),
pages 16-29, 2012.

SimpleFleet. Democratizing fleet management [online].
http://www.simplefleet.eu, 2013.

K. Tretyakov, A. Armas-Cervantes, L. Garcia-Bafiuelos,

J. Vilo, and M. Dumas. Fast fully dynamic landmark-based
estimation of shortest path distances in very large graphs. In
Proc. 20th CIKM conf., pages 1785-1794, 2011.

